A Riemannian stochastic representation for quantifying model uncertainties in molecular dynamics simulations

TitleA Riemannian stochastic representation for quantifying model uncertainties in molecular dynamics simulations
Publication TypeJournal Article
Year of Publication2023
AuthorsH Zhang, and J Guilleminot
JournalComputer Methods in Applied Mechanics and Engineering
Volume403
Date Published01/2023
Abstract

A Riemannian stochastic representation of model uncertainties in molecular dynamics is proposed. The approach relies on a reduced-order model, the projection basis of which is randomized on a subset of the Stiefel manifold characterized by a set of linear constraints defining, e.g., Dirichlet boundary conditions in the physical space. We first show that these constraints are, indeed, preserved through Riemannian pushforward and pullback actions to, and from, the tangent space to the manifold at any admissible point. This fundamental property is subsequently exploited to derive a probabilistic model that leverages the multimodel nature of the atomistic setting. The proposed formulation offers several advantages, including a simple and interpretable low-dimensional parameterization, the ability to constraint the Fréchet mean on the manifold, and ease of implementation and propagation. The relevance of the proposed modeling framework is finally demonstrated on various applications including multiscale simulations on graphene-based systems.

DOI10.1016/j.cma.2022.115702
Short TitleComputer Methods in Applied Mechanics and Engineering